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To improve ice accretion prediction codes, more data regarding ice roughness and its 
effects on convective heat transfer are required. The Vertical Icing Studies Tunnel (VIST) at 
NASA Glenn Research was used to model realistic ice roughness in the stagnation region of a 
NACA 0012 airfoil. In the VIST, a test plate representing the leading 2% chord of the airfoil 
was subjected to flows of 7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). The test 
plate was fitted with multiple surfaces or sets of roughness panels, each with a different 
representation of ice roughness.  The sets of roughness panels were constructed using two 
element distribution patterns that were created based on a laser scan of an iced airfoil 
acquired in the Icing Research Tunnel at NASA Glenn.  For both roughness patterns, 
surfaces were constructed using plastic hemispherical elements, plastic conical elements, and 
aluminum conical elements.  Infrared surface thermometry data from tests run in the VIST 
were used to calculate area averaged heat transfer coefficient values. The values from the 
roughness surfaces were compared to the smooth control surface, showing convective 
enhancement as high as 400% in some cases. The data gathered during this study will 
ultimately be used to improve the physical modeling in LEWICE or other ice accretion codes 
and produce predictions of in-flight ice accretion on aircraft surfaces with greater 
confidence. 

Nomenclature 
Ac = Accumulation parameter 
Ap = Total area of heated section 
B = Systematic uncertainty (Bias) 
c = Chord length 
cp = Specific heat 
E = Voltage across gold-deposited Mylar heater 
Fz = Frossling number 
h = Local convective heat transfer coefficient 
I = Current through gold-deposited Mylar heater 
k = Roughness element height 
kp = Thermal conductivity of Plexiglas ( = 0.205 W/m*K) 
kf = Thermal conductivity of a fluid 
LWC = Liquid water content 
MVD = Mean volumetric diameter of water droplets in icing event 
N = Number of repeated measurements used to calculate a mean measurement 
Nu = Nusselt number 
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Re = Reynolds number 
RMH = Roughness maximum height evaluated at each codebook vector representing mean ice shape 
r0 = the leading-edge radius of the airfoil 
s = Distance along the surface of an airfoil 
S = Standard deviation of uncertainty measurements 
St = Stanton number 
t = Students-t value (~2 for large sample sizes and 95% level of confidence) 
tp = Thickness of Plexiglas base ( = 0.72 in.) 
T∞ = Free stream fluid temperature 
TSS = Subsurface Plexiglas temperature from embedded thermocouple 
TUP = Under Plexiglas plate temperature from thermocouple 
TIR = Local surface temperature from infrared camera 
Ue = Velocity at the edge of the boundary layer 
Uinf = Freestream velocity of the airfoil or test section 
uk = Velocity at the maximum peak of the roughness elements 
V = Freestream velocity in icing event 
x = Distance along the test plate from the stagnation point 
ρ = Density of air 
ρice = Density of ice 
ε = Emissivity of painted test plate surface ( = 0.95) 
σ = Stefan-Boltzmann constant ( = 5.67E-8 W/m2*K4) 
µ = Molecular viscosity of the air 
Δts = Ice accretion event time 

I. Introduction 
EWICE couples computational fluid dynamics, heat transfer, droplet capture physics, and solidification 
thermodynamics to predict the formation of ice accretions on airfoils.  Because of the importance of removing 

latent energy from liquid layers found in glaze icing conditions to enable phase change of the water to ice, capturing 
the convective enhancement of roughness elements formed on the iced airfoil surface is critical to in-flight ice 
accretion predictions in supercooled droplet conditions. However, the sand-grain equivalent model, used by 
LEWICE to model ice roughness, is generated by a single variable, the freezing fraction at the stagnation point 
which describes how rapidly ice will freeze following its impingement on the airfoil [1]. Further, the correlations 
used in LEWICE to predict the convective heat transfer are based on ordered arrays of deterministic elements [1, 2]. 
Because of its use of a simplified roughness and convection enhancement models, LEWICE predictions of the 
convection losses from the airfoil, while currently conservative from a vehicle design and safety standpoint, can be 
improved.  
 In improving the LEWICE roughness and convection models, it is important to recognize the significant 
differences between real ice roughness and the roughness employed in most historic literature regarding flow over 
and convection rough surfaces.  As most recently noted by Shannon and McClain [3], realistic ice roughness varies 
greatly from classical roughness correlations such as the sand grain equivalent model used in LEWICE. The ways in 
which they vary are as follows: 
 

1) Rather than a uniform grid or pattern, real ice roughness displays a random distribution in both element size 
and location on the surface on which it accretes,  

2) Ice roughness elements exhibit a wide variety of shapes most of which are not readily described using 
deterministic geometry, 

3) Ice roughness properties vary in the direction of flow and may even exhibit an abrupt smooth-to-rough 
transition,  

4) Surfaces with ice roughness exhibit varying thermal boundary conditions in the direction of flow due to the 
variations in ice growth rates,  

5) Because of the nature of an airfoil, surfaces undergoing ice accretion experience mild to high flow 
acceleration, and 

6) Because of the local freezing process, the surface of the ice roughness is essentially isothermal and acts as a 
surface with near infinite thermal conductivity.  

 

L 
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 Previous studies in this series have examined various cases of ice roughness in order to isolate the importance of 
the realistic ice roughness features noted above related to the enhancement of convective heat transfer during icing 
events. Tecson and McClain [4] studied convective enhancement of surfaces exposed to flows with minimal 
freestream acceleration with random element distributions similar to those found in real icing events. Walker et al. 
[5] continued the study by observing the same surfaces in flows with minimal freestream acceleration but which 
were exposed to changing thermal boundary conditions. Shannon and McClain [3] furthered the series of studies by 
adding new surfaces which modeled IRT icing events and exposing both the previous surfaces and the new IRT 
surfaces to accelerating flows with both constant and varying thermal boundary conditions. Shannon and McClain 
[3] used the IRT surfaces to model the leading 17.1% chord of a NACA 0012 airfoil exposed to a short-duration 
icing event. However, due to the limitations of the accelerating flow insert and wind tunnel used in the experiment, 
the rapid acceleration in the stagnation region, the leading 2% chord region, of the NACA 0012 airfoil was not 
replicated.  For the ice roughness case explored by Shannon and McClain [3], the accretion time and resulting 
accumulation parameter, defined as: 
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are low enough (Ac  0.2) that roughness is not substantial in the stagnation region.  That is, the roughness levels in 
the stagnation region are not large enough to force premature transition or elevated convective heat transfer rates 
beyond those of laminar stagnation region flow.   
 For longer accretion times, when Ac approaches values of 0.5 and higher [6-8], significant roughness features 
develop in the stagnation region.  After Ac values approach 0.5, the leading 2% region becomes critical to the study 
ice accretion heat transfer because the roughness elements may cause the flow to transition to turbulent even in the 
presence of the very high flow acceleration rates.  The efforts of this paper were performed to examine the leading 
2% chord mentioned above and further the study of ice roughness and its enhancement of convective heat transfer in 
icing events once significant roughness has developed in the stagnation flow region of the airfoil. To accomplish 
this, a heated test plate was installed in the Vertical Icing Studies Tunnel (VIST) at NASA Glenn Research Center. 
Roughness panels exhibiting characteristics matching those of a 21 in. NACA 0012 airfoil exposed to a short 
duration icing event were created for installation on the VIST heated test plate. The test plate, outfitted with the 
roughness panels, was heated and exposed to various flow situations. Surface temperatures were measured using an 
infrared camera and combined with thermocouple data to determine the conduction, convection, and radiation losses 
from the heated test plate during steady state conditions. From the data, local convection coefficients were 
calculated and compared to surface panels with no roughness, representing an airfoil with no ice accretions; thus 
giving quantifiable enhancement of the convective heat transfer due to ice roughness.  
 In Hughes et al. [9], the initial convection maps from the surfaces with plastic hemispherical elements and the 
results of a flow quality study were presented.  In the present paper, the local non-dimensional convection 
coefficients are compared to historical studies of airfoil stagnation region heat transfer for smooth surfaces.  Further, 
surfaces with plastic cones and surfaces with aluminum cones were added to the VIST investigations.  The conical 
elements were created with the same distributions as the hemispherical elements and were used to investigate the 
importance of the roughness element shape in determining the convection coefficients.  The aluminum surfaces were 
created to investigate the effects of the constant freezing temperature of the freezing front on the ice surfaces.  
Because of the very high thermal conductivity, the aluminum surfaces create a near isothermal surface replicating 
the isothermal surface icing condition.  While testing surfaces constructed using Aluminum hemispheres was 
initially desired, hemispherical elements could not be satisfactorily machined for the study because of the finite mill 
tool diameters in combination with the very close proximities of the elements on the distributions employed.   

II. Methodology 
All testing in this study was performed at NASA Glenn Research Center using the Vertical Icing Studies Tunnel 

(VIST). The following sections will outline the testing apparatus, the creation of the test plate, the scaling and 
creation of the surface panels, the testing procedure and test cases, and the data reduction approach used. 

A. Testing Apparatus 
The VIST is a closed loop, atmospheric tunnel with a 7.2:1 contraction ratio, a 4 in. wide throat, and a 3 HP DC 

motor with a max speed of 1750 rpm. The VIST’s fan enables throat velocities up to 25 m/s (82 ft/s). The VIST was 
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designed in 2005 by White and Oliver [10]. The VIST was originally design to study water droplet impingement in 
the stagnation region of a mid-sized commercial jet airliner.  

The VIST’s design to study the stagnation region of airfoils made it an ideal testing apparatus for this 
investigation of icing heat transfer. Unlike conventional wind tunnels, the VIST utilizes an instrumented flat plate to 
model the airfoil desired. To model the stagnation region of the desired airfoil, the side walls of the VIST were 
contoured and instrumented with pressure taps to ensure the test plate was subjected to the same accelerating flows 
experienced by the airfoil in question. The original test plate installed in the VIST was a 30 in. by 60 in. flat, 
aluminum plate instrumented with pressure taps along its surface. The stagnation point on the test plate was directly 
in the center, with the flow impinging downward on the test plate at the center and accelerating as the flow 
continued outward as shown in Figure 1. For this study, new side walls were created to subject the test plate to flows 
experienced by a NACA 0012 and to allow infrared camera access as shown in Figure 2. Additionally, a new test 
plate was created for the heat transfer experiments used in this study. 

 

 
Figure 1. VIST Schematic Showing Side Wall and 

Test Plate Position [Reprinted from White and Oliver 
[10] with permission] 

 
Figure 2. VIST Side Wall Showing Camera Mount 

Location and IR Viewports 
 

B. Test Plate 
The original test plate for the VIST was instrumented to study pressure variation along the plate and allow for 

hotwire and pitot-probe traces, but since this study examined heat transfer, a new test plate was needed to allow for 
heat transfer measurements. The new heated test plate consisted of 4 layers as shown in Figure 3. A Plexiglas base, 
with a thickness of 0.72 in., was selected to provide the test plate with a low conductivity surface to minimize heat 
loss. A gold-deposited Mylar film heater, measuring 7 in. by 20.5625 in., was placed in the center of the test section 
to provide heat during the steady state tests. The surface panels were placed on top of the heated, or the Plexiglas 
base on areas not covered by the heater, and consisted of two layers. The bottom layer was constructed of Neoprene 
to even out the contact pressure between the panels and the heater elements. The second layer consisted of the 
surface itself, containing either a smooth finish or roughness elements and made of either ABS plastic or aluminum. 
While the Plexiglas surface was far less conductive than an aluminum one, conduction losses through the base still 
needed to be quantified for the experiment. To accomplish this, several K-type thermocouples were placed 
throughout the test plate. Beginning at the stagnation point and continuing in the streamwise direction, 14 
thermocouples were placed just under the heater, as shown in Figure 4, and are referred to as the Sub-Surface 
Thermocouples. An additional 10 thermocouples were placed on the bottom of the Plexiglas base at the same 
locations as the first 10 Sub-Surface Thermocouples and are referred to as the Under-Plate Thermocouples. 
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Figure 3. Heated test plate cut-away showing different layers of the plate. [Reprinted from Walker et al. [5] 

with permission] 
 

 
Figure 4. Layout of heated test plate showing thermocouple locations and location of Gold-deposited Mylar 

film heater. 
 

C. Surface Panels 
The roughness models used in this experiment were based on an IRT icing event on a 21 in. NACA 0012 with 

the characteristics shown in Table 1. Due to the size difference between the 21 in. NACA 0012 and the 30 in by 60 
in test section in the VIST, the modeled surfaces needed to be scaled. The leading 2% chord of the 21 in. NACA 
0012 was measured at ±0.42 in. from the stagnation region. Scaling this to the VIST test section, ±30 in., to match 
Reynolds numbers in both the streamwise velocity, Eq. (1), and velocity at the maximum height roughness elements, 
Eq. (2), resulted in a throat velocity of 0.93 m/s (3 ft/s) which was outside of the VIST’s operational range.  
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Therefore, using the entire test section of the VIST was not practical.  To remedy this, only the center section of the 
test plate was utilized; that is, ±10.27 in. from the stagnation region. This resulted in a geometric scaling factor of 25 
when compared to the 2% chord (±0.42 in.) of the NACA 0012. However, scaling the individual roughness elements 
by 25 resulted in a maximum element height of 25 mm (≈1 in.) and a maximum element diameter of 50 mm (≈2 in.). 
Elements of this sized caused another problem: when viewed with the infrared camera, the largest elements would 
occupy a large portion of the IR image, resulting in poor values for local heat transfer coefficients which would not 
represent a spatially averaged heat transfer coefficient. 
 

 
Table 1. Characteristics of icing event used to determine roughness distribution in test panels  

(IRT test case 032714.06) 
Airfoil 21 in. NACA 0012 
MVD 29.7 µm 
LWC 0.6 gm/m3

Freezing Fraction 0.217 
Δts 200 seconds 
V 66.7 m/s 
Ac 0.521 

 
Another option was to choose a geometric scaling factor of 10, resulting in the leading 2% chord region of width 

±107 mm (±4.2 in.). However, this resulted in a throat velocity requirement of 21 m/s (67 ft/s) which was near the 
upper limit of the VIST’s operational range. Additionally, operating at high velocities would result in much higher 
convection losses from the heated test plate, reducing the temperature difference between the freestream and the test 
plate surface and making the measurements more difficult. 

Because the geometric scaling factors of 10 and 25 were both feasible but presented problems, a combination of 
the two was decided upon. Two schemes were devised. The first scheme was a geometric scaling of both the 
roughness elements and the leading 2% chord region by a factor of 10. This was known as the x10x10 surface. The 
second scheme was a geometric scaling of the roughness elements by a factor of 10 and the leading 2% chord region 
by a factor of 25. This was known as the x10x25 surface. However, due to this compromise, Reynolds numbers on 
these schemes did not match the IRT test from which the roughness surfaces were created. To remedy this, three 
throat velocities were selected to provide an “envelope” around the desired Reynolds scaling. The velocities were 
7.62 m/s (25 ft/s), 12.19 m/s (40 ft/s), and 16.76 m/s (55 ft/s). Table 2 contains a summary of characteristics from 
each of the velocity cases and compares them to the NACA 0012 from which the roughness surfaces were created. 

To model the realistic ice roughness correctly, the distribution of roughness elements and the mean element 
height in relation to the distance from the stagnation point were obtained from an IRT icing event.  The icing event 
used for the study, identified as IRT test case 032714.06 and summarized in Table 1, was scanned with a ROMER 
Absolute Arm laser scanning system. From the resulting point cloud, shown in Figure 5, the method of McClain and 
Kreeger [11] was used to determine the variations in the roughness in the streamwise direction. From the roughness 
results, the roughness maximum height, defined as 3.09 times the root-mean-square element height, was determined 
and plotted as a function of distance from the stagnation point, shown in Figure 6. Using the method employed by 
Tecson and McClain [12] a LaGrangian droplet simulator was used to generate a roughness element distribution 
which modeled the maximum roughness height for the 032714.06 case.  The blue dashed line of Figure 6 depicts the 
diameter scaling function, which is a function of the X-distance from the stagnation point and which was multiplied 
by the local element diameters to create a distribution with same X-direction property variations as exhibited by the 
032714.06 case. The resulting distribution containing the same roughness variation modeled using hemispheres and 
cones as shown in Figure 7.  The cones were constructed using a base to height ratio of 0.5 so that the apex height of 
the cones would be the same as the apex height of the hemispheres.  
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With the surface distributions generated, .stl files were created in SolidWorks and used to create plastic and 
aluminum surfaces. The plastic surface were printed on an Objet 30 3D printer using their VeroWhite Plus material 
with a resolution of 0.003-in.. while the aluminum surfaces were generated using a CNC router. Table 3 displays the 
various surfaces and scaling factors used, resulting in a total of 7 test surfaces. 

 
 

Table 2. Summary of Test Case Design Parameters Compared to NACA 0012 
Roughness 

Pattern 
Uth or 

U∞ (m/s) 
x2% or s2% 

(mm) 
Ue,2% 

(m/s) 
kmax,2% 
(mm) 

ρ 
(kg/m3) 

µ × 106 
(Ns/m2) 

Rex,2% Rek,2% 

x10x10 7.62 107 2.74 10.6 1.219 18.4 19,415 1,923 
x10x10 12.19 107 4.38 10.6 1.219 18.4 31,059 3,077 
x10x10 16.76 107 6.02 10.6 1.219 18.4 42,702 4,230 
x10x25 7.62 261 4.28 10.6 1.219 18.4 73,964 3,004 
x10x25 12.19 261 6.84 10.6 1.219 18.4 118,322 4,805 
x10x25 16.76 261 9.41 10.6 1.219 18.4 162,681 6,607 
Smooth 7.62 n/a n/a n/a 1.219 18.4 n/a n/a 

Smooth 12.19 n/a n/a n/a 1.219 18.4 n/a n/a 

Smooth 16.76 n/a n/a n/a 1.219 18.4 n/a n/a 

NACA 
0012 

66.7 10.7 63.8 1.15 1.306 17.2 51,978 5,586 

 
 

 
Figure 5. Point cloud from NACA 0012 icing event used to generate roughness panels [9] 

 

 
Figure 6. Max roughness height as a function of distance from the stagnation point [9] 
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D. Procedure 
 For each experimental test, calibrations were performed to reduce uncertainty and improve the quality of the data 
collected. The tunnel and test plate with the appropriate surface panels installed were left cold overnight to ensure an 
equilibrium temperature throughout the testing apparatus. The morning of testing, a LabVIEW software program 
that was used to run and monitor the VIST was activated and used to record baseline temperature and pressure data. 
Then, infrared images were recorded at each of the 7 positions for 10 seconds at 10 frames per second. The unheated 
infrared images provided a baseline surface temperature map, to which the test runs performed following the 
calibration could be compared. Taking the difference between the test data and the calibration data minimized total 
uncertainty by substantially reducing the systematic uncertainty of the FLIR camera and the thermocouples placed 
throughout the test section. 

 
Figure 7. x10x10 and x10x25 roughness distributions. Both distributions were modeled using hemispheres 

and cones. [The X-limits of the two surface depictions is ±261 mm (±10.27 in.).] 
 

 
Table 3. Roughness panels and layouts. 

Surface Distribution Material Element Shape 
x10x10 VeroWhite Hemispheres 
x10x10 VeroWhite Cones 
x10x10 Aluminum Cones 
x10x25 VeroWhite Hemispheres 
x10x25 VeroWhite Cones 
x10x25 Aluminum Cones 
Smooth VeroWhite No Elements 

 
 
Following calibration, the LabVIEW program was used to select the desired upstream flow velocity and start the 

tunnel. For each test, the VIST’s cooling system was activated and set to 65°F. The thin-film heater power supply 
was then activated and set to the desired input current and voltage, which were typically 6 A and 6 V, respectively. 
Two multimeters were used to verify the voltage leaving the power supply and the voltage across the thin-film 
heater throughout the duration of the test. Temperatures throughout the test section were then monitored using the 
LabVIEW software to determine when the tunnel had achieved steady-state temperatures.  The process of reaching 
steady state typically required two hours. Once the tunnel had achieved stable temperatures, denoting steady state, 
the infrared camera was used to record images for 10 seconds at 10 frames per second at each of the 7 positions. 
These recorded images provided a detailed temperature distribution of the test plate surface. The LabVIEW program 
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used to operate the tunnel also recorded thermocouple data throughout the duration of the test which was used to 
determine the conduction and radiation losses. 

E. Data Reduction 
Following each test, a large amount of data was gathered. The IR images acquired provided surface temperature 

data (TIR), thermocouples in the test plate provided temperature directly below the surfaces (TSS) and temperature 
underneath the test plate (TUP), thermocouples placed in the tunnel provided freestream temperature (T∞) which was 
also used as the temperature of the surroundings, and multimeters supplied the input current (I) and the input voltage 
(V). From this data and constants determined prior to testing, an energy balance was used to calculate the local 
convection heat transfer coefficient, h, at each pixel location as shown in Eq. (4).  
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From the local convection coefficients, 1-in. by 1-in. area averaged values, , were then determined by taking the 
area average at each in. from the stagnation region, as shown in Eq. (5).  
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Following the calculation of the heat transfer coefficient values, other non-dimensional correlations were 
calculated. The Nusselt number with respect to total chord length, Nu, was calculated using Eq. (6), 

 
fk

ch
Nu   (6) 

where kf is the thermal conductivity of the fluid, and c is the length of the scaled chord. Stanton numbers with 
respect to the local Reynolds numbers were found using Eq. (7) and Eq. (8) respectively.  
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Finally, the Frossling number, which was used to compare data to previous studies, was found using Eq. (9). 

 
c

Nu
Fz

Re
  (9) 

Because of the camera location and the contoured side walls, each of the 7 images corresponding to different 
locations in the streamwise direction had varying real world dimensions and also contained large portions of the 
tunnel side walls. That is, while each image was 320 pixels by 256 pixels, the number of pixels per in. varied 
depending on the position and angle of the camera from which the image was taken. From images taken prior to 
testing, the rate of pixels per in. for each image and its corresponding real world location was calculated and 
implemented into a MATLAB script. For more details regarding the pixel mapping process, the data acquisition 
method, and the data reduction approach the reader is referred to Hughes [13]. 
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F. Uncertainty Analysis 
     Uncertainty calculations for the convective heat transfer values were determined using the large sample size 
approach of Coleman and Steele [14], which is an extension of the approach of Kline and McClintock [15]. The 
uncertainties for each experimentally measured quantity used in Eq. (5) are presented in Table 4. 
    The main benefit of the in situ calibration performed before testing each day was the reduction of the instrument 
error of the infrared temperature measurements. By taking the difference in between the calibration and test 
temperature values, the systematic uncertainties in the temperature measurements were all correlated.  Thus, 
systematic uncertainty propagating into the resulting convection coefficients contributed by the temperature 
measurements was negligible.  
 
 

 Table 4. Uncertainty Values for Convective Heat Transfer Coefficient Measurements 
Variable Systematic Uncertainty Total Uncertainty 
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III. Results and Discussion 
The process of creating detailed convection maps for the surfaces and the flow validation results were covered in 

Hughes et al. [9].  The results of this study focus on the validation of the convection measurements and the 
determination of the roughness enhancement for the cases studied.  Only reduced measurements are reported in this 
paper; the reader is directed to Hughes [13] for directly measured experimental quantities and intermediate reduced 
results. 

A. Baseline Comparison to Poinsatte Results 
While significant historical literature exists regarding stagnation region flows, the most relevant to the Reynolds 

number regime used in this study and the most relevant to in-flight icing are the studies by Poinsatte [16] and 
Poinsatte et al. [17]. In the Poinsatte investigations, spanwise-strip heaters were installed in a NACA 0012 airfoil 
and exposed to various conditions in the IRT and in real atmospheric flows using the NASA Twin Otter Icing 
Research Aircraft.  Using a complex control system, the power to each heater was controlled to maintain a constant 
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temperature along the airfoil surface.  Several distributions of hemispherical roughness were then added to the 
heated leading-edge area of the airfoil to mimic ice accretion roughness.   
 While the smooth NACA 0012 airfoil studies of Poinsatte are similar in configuration to the stagnation flow 
studies in the VIST, finding a case to directly compare results is difficult for several reasons.  First, the free stream 
velocities used by Poinsatte [16] and Poinsatte et al. [17] do not directly match the cases used in this study which 
were constructed to match more recent icing studies in the IRT.  Second, the apparatus employed for the Poinsatte 
studies was constructed to impose isothermal surface conditions, while the VIST efforts were constructed to reflect 
constant flux conditions.   
 In reviewing all of the cases studied by Poinsatte [16] and Poinsatte et al. [17], the most closely related case to 
the current study was performed in the IRT and resulted in a chord Reynolds number of 2.42106.  This case is most 
appropriately compared to the smooth surface case exposed to a VIST throat velocity of 16.76 m/s (55 ft/s) which 
when employing a x10 surface scaling would correspond to a chord Reynolds number of 2.25106.  Figure 8 
presents a comparison of the VIST data to the appropriate Poinsatte data cast in terms of Frossling numbers versus 
the distance from the stagnation point relative to the airfoil chord, which was the dimensionless formatting of 
convection results preferred in the Poinsatte studies.  The Smith and Spalding [18] prediction, as indicated in Eq. 
(10), for the isothermal Poinsatte case is also presented.   
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where  is a dummy integration variable representing x, and b = 2.95Pr0.07. 
 Figure 8 shows that the VIST results at the stagnation point agree with the Rec = 2.42106 Poinsatte case.  
However, downstream of the stagnation point, the VIST measurements increase and then decrease in a manner 
similar to the Poinsatte data.  The increase in Frossling numbers was unexpected and may indicate an “impingement 
inviscid core” region created by the new shape of the tunnel sidewalls.  However, downsteam of the maximum 
Frossling number, the Frossling numbers decrease at a rate similar to the Poinsatte data and are larger in value as 
would be expected given the change from isothermal wall conditions to those of constant flux. 
 

 
Figure 8. Comparison of VIST Measurements to Isothermal NACA 0012 Measurements of Poinsatte [16] 

B. Roughness Convective Enhancement Results 
As noted in Tables 2 and 3, seven surfaces including the smooth surface were tested at three different throat 

velocities.  The six rough surfaces were based on two distinct roughness distributions and constructed using plastic 
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hemispheres, plastic cones, or aluminum cones.  Because of the lack of a physical airfoil in the tests, the results of 
the enhancement are presented in terms of Stanton numbers instead of Frossling numbers.  Stanton numbers are not 
dependent on the distance from the stagnation point in mathematical definition and further have the benefit that the 
Stanton number variation with the flow direction distance reflects behavior similar to the variation expected for skin 
friction coefficients.   

Figure 9 presents the Stanton numbers for the surfaces constructed using the x10x10 distribution compared to the 
smooth surface results.  Each subfigure in Figure 9 groups the surface results by VIST throat velocity.  Included in 
Figure 9 are the predictions for the Stanton numbers based on applying the Smith and Spalding [18] correction to the 
convection correlation for laminar flow with a constant flux boundary condition.   
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Figure 9 demonstrates several important phenomena.  First, Figure 9 shows that the smooth surface results 

compare well with the Smith and Spalding predictions of Eq. (11). Second, for the x10x10 distribution, the 
measured convection from the plastic cones and plastic hemispheres both increase to a maximum at the location of 
the where the roughness elements reach maximum heights and then decay.  At the maximum values, the convection 
coefficients are 200%-250% of the smooth surface convection coefficients. While the plastic cones generally exhibit 
slightly higher convection coefficients, the convection from both plastic x10x10 distributions are comparable.   

Another interesting aspect of Figure 9 is that downstream of the location of maximum convection and roughness, 
the Stanton numbers approach the laminar predictions of Eq. (11) as if the flow were attempting to relaminarize in 
response to the very high local acceleration rates.  Hot-wire traces taken downstream of the roughness x10x10 cones 
and hemispheres indicated that turbulent flow exist downstream of the roughness region; however, the 
relaminarization process could not be verified. 

Figure 9 also shows that the aluminum cone x10x10 surface exhibits much higher convection coefficient values 
than either plastic surface with the exception of just at the location of the maximum roughness height.  However, the 
aluminum results do indicate that the lack of thermal resistance (very high thermal conductivity values) are smearing 
the results.  That is, at the stagnation point, longitudinal (in the flow direction) conduction effects make the 
measured coefficients appear much higher than the values found on the plastic surfaces and the values predicted 
using Smith and Spalding correlation.   

Figure 10 presents the Stanton numbers for the surfaces constructed using the x10x25 distribution compared to 
the smooth surface results.  As is the case for Figure 9, each subfigure in Figure 10 groups the surface results by 
VIST throat velocity.  Comparing the plastic x10x25 cases to the plastic x10x10 cases, the maximum convection 
rates on the x10x25 surfaces appear much farther downstream because the location of maximum roughness occurs 
much farther downstream.  Unlike the plastic x10x10 cases, the x10x25 cases do show that for one velocity cases, 
the 7.62 m/s (25 ft/s) case, the plastic cones promote higher convection rates than the plastic hemispheres.   For the 
slowest velocity, the best explanation is that the increased blockage of the hemispherical elements decreases energy 
of the fluid interacting with the roughness elements.  As the throat velocity increases, the momentum of the fluid is 
able to bring it closer to the hemispherical roughness elements such that significant differences do not exist between 
the x10x25 plastic cones and hemispheres.  For the 12.19 m/s (40 ft/s) and 16.76 m/s (55 ft/s) cases, the maximum 
convection rates are between 300% and 350% of the laminar predictions.  For the lowest throat velocity, the 7.62 
m/s (25 ft/s) case, the plastic cone surface exhibits a convection rate just below 400% of the laminar Stanton number 
prediction.   

Figure 10 also demonstrates that the x10x25 aluminum cones, like the x10x10 aluminum cones, are affected by 
internal conduction in that the stagnation point Stanton numbers are much higher than predicted using the laminar 
Smith and Spalding correlation.  However, Figure 10 demonstrates that once the roughness levels become 
significant on the x10x25 aluminum surface, the convection rates increase significantly until the Stanton numbers 
reach near-constant or slightly-decreasing levels.  Recalling the Stanton number definition of Eq. (7), St = h/(cpUe), 
the near constant values indicate that the convection rates are increasing at a rate proportional to the increases in 
freestream velocity for the aluminum surface.   
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Figure 9. Measured Stanton Numbers for the 

x10x10 distribution: (a) 7.62 m/s (25 ft/s), (b) 12.19 
m/s (40 ft/s), and (c) 16.76 m/s (55 ft/s) 

 
Figure 10. Measured Stanton Numbers for the 

x10x25 distribution: (a) 7.62 m/s (25 ft/s), (b) 12.19 
m/s (40 ft/s), and (c) 16.76 m/s (55 ft/s) 
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 The intent of using aluminum surfaces was to replicate the near isothermal surface caused by the phase change 
of an ice surface.  The results of Figures 9 and 10 indicate that because the aluminum thermal conductivity is so high 
and the plates are so large, the longitudinal and spanwise conduction effects are extremely important.  In hindsight, 
if the wall-normal isothermal effects must be considered, the best way to accomplish this is to machine short strips 
(in the x-direction) of the surface and separate the strips with insulators to inhibit the flow-direction conduction.  
The most relevant findings from this study that can be inferred for the aluminum surfaces are 1) for the x10x10 the 
convection rates from the aluminum surface at the point of maximum roughness is very similar to the convection 
rates from the surfaces with plastic elements at the same surface location and 2) for the x10x25 surface, for which 
the point of maximum roughness occurs much further downstream and experiencing a taller boundary layer, the 
convection rates from the aluminum surface are much  higher than the convection rates on the plastic surfaces at the 
same surface location.  These two findings are used to infer that roughness element conduction is more important 
when the roughness elements are interacting with larger boundary layers. 

IV. Conclusion 
As part of an ongoing effort to examine the effects of ice roughness on convective enhancement in aircraft icing 

events, this study examined such convective enhancement in the stagnation region, or the leading 2% chord, of a 21-
in. NACA 0012 which was tested in the IRT at NASA Glenn. Using ice roughness distributions modeled from a real 
ice shape generated in the Icing Research Tunnel at NASA Glenn Research Center, experiments were performed in 
the Vertical Icing Studies Tunnel at NASA Glenn Research Center. Because of the difference between the airfoil 
used in the IRT and the test section of the VIST, scaling issues were encountered. Based on the two different 
roughness element distributions, rough surfaces were created using plastic hemispheres, plastic cones, and 
aluminum cones. Infrared camera and thermocouple measurements were used to determine convective heat transfer 
rates from the surfaces under three flow conditions.  

The primary conclusions of the study are: 
 
 1) For the x10x10 distributions, the convection rates from the plastic cones was not substantially different 

from the convection rates from the plastic hemispheres, 
 2) The convection rates for the aluminum x10x10 are not significantly different from the rates on the plastic 

x10x10 distributions at the point of the maximum roughness heights, 
 3) For the x10x25 distributions, the convection rates from the plastic cones was significantly higher than the 

plastic hemispheres only for the lowest throat velocity tested, 
 4) The convection rates for the aluminum x10x25 surface are significantly higher than the plastic distributions 

at the point of maximum roughness heights indicating the roughness thermal conductivity may be more 
important when the boundary layers are taller relative to the roughness height, and  

 5) While the aluminum surfaces were intended to simulate the near-isothermal condition imposed by the 
phase change occurring on an iced airfoil surface, lateral and longitudinal conduction effects are significant 
in the current experimental results.  The results presented are still important in that they may be used to 
infer the importance of the local fluid temperature within the boundary layer, however, the results are not 
expected to reflect the physics of isothermal rough surfaces in stagnation region flows. 

 
The results of the study provide significant insight into the physics of convection enhancement caused by icing 
roughness.  Further, the comparison of plastic cones and hemispheres indicate that either shape may be appropriate 
models for real roughness formed in the stagnation regions of airfoils exposed to supercooled icing conditions.   
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